Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks.
نویسندگان
چکیده
In view of a great demand for paper-based technologies, nonwettable fibrous substrates with excellent durability have drawn much attention in recent years. In this context, the use of cellulose nanofibers (CNFs), the smallest unit of cellulosic substrates (5-20 nm wide and 500 nm to several microns in length), to design waterproof paper can be an economical and smart approach. In this study, an eco-friendly and facile methodology to develop a multifunctional waterproof paper via the fabrication of fluoroalkyl functionalized CNFs in the aqueous medium is presented. This strategy avoids the need for organic solvents, thereby minimizing cost as well as reducing safety and environmental concerns. Besides, it widens the applicability of such materials as nanocellulose-based aqueous coatings on hard and soft substrates including paper, in large areas. Water droplets showed a contact angle of 160° (±2°) over these surfaces and rolled off easily. While native CNFs are extremely hydrophilic and can be dispersed in water easily, these waterborne fluorinated CNFs allow the fabrication of a superhydrophobic film that does not redisperse upon submersion in water. Incorporated chemical functionalities provide excellent durability toward mechanochemical damages of relevance to daily use such as knife scratch, sand abrasion, spillage of organic solvents, etc. Mechanical flexibility of the chemically modified CNF composed paper remains intact despite its enhanced mechanical strength, without additives. Superhydrophobicity induced excellent microbial resistance of the waterproof paper which expands its utility in various paper-based technologies. This includes waterproof electronics, currency, books, etc., where the integrity of the fibers, as demonstrated here, is a much-needed criterion.
منابع مشابه
Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use
A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The...
متن کاملAmphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction.
Nanofibrillated cellulose (NFC) was incorporated to reduced graphene oxide (rGO) for fabrication of multifunctional amphiphilic aerogels. The as-prepared amphiphilic aerogel showed excellent recoverability, superior absorption capacity for both organic solvents and water, and an electrical conductivity sensitive to compressive strain making it highly potential to be used as a pressure-responsiv...
متن کاملFluorine-Rich Planetary Environments as Possible Habitats for Life
In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a "fluorous effect", i.e., they are fluorophi...
متن کاملFacile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation
In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient p...
متن کاملLa(OTf)2-amine Grafted-GO as the First Multifunctional Catalyst for the One-pot Three-component Synthesis of α-Aminophosphonates
In this paper, the applicability of immobilized lanthanum (III) triflate on amine grafted graphene oxide [La(OTf)2-amine grafted-GO] as the first multifunctional catalyst is described for the efficient synthesis of α-aminophosphonates by one-pot three-component reaction of carbonyl compounds, substituted anilines and trialkyl phosphites. Various α-aminophosphonates were synthesized in good to h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2017